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𝐚𝐚�⃑ =
∑ �⃑�𝐅
𝑚𝑚  

 

Impulse-momentum theorem (focus on force and time) Work-energy theorem (focus on force and position) Rotational formulation for Newton’s second law (change coordinate system) 

 

 

 

 

 

Algebra-based 
 

Consider time-averaged force 
 

𝐚𝐚�⃑ AVG =
∑ �⃑�𝐅AVG
𝑚𝑚

 

∑ �⃑�𝐅AVG
𝑚𝑚

=
Δ𝐯𝐯�⃑
Δ𝑡𝑡

 

��⃑�𝐅AVG Δ𝑡𝑡 = 𝑚𝑚Δ𝐯𝐯�⃑  

��⃑�𝐅Δ𝑡𝑡 = 𝑚𝑚�𝐯𝐯�⃑𝑓𝑓 − 𝐯𝐯�⃑ 𝑖𝑖� 

��⃑�𝐅Δ𝑡𝑡 = 𝑚𝑚𝐯𝐯�⃑𝑓𝑓 − 𝑚𝑚𝐯𝐯�⃑ 𝑖𝑖  

��⃑�𝐅AVG Δ𝑡𝑡�������
Δ𝐉𝐉Σ�⃑�𝐅

= Δ�𝑚𝑚𝐯𝐯�⃑�
𝐩𝐩��⃑
� 

Calculus-based 
 

∑ �⃑�𝐅
𝑚𝑚

=
d𝐯𝐯�⃑
d𝑡𝑡

 

� ∑�⃑�𝐅 d𝑡𝑡

𝑡𝑡=𝑡𝑡𝑓𝑓

𝑡𝑡=𝑡𝑡𝑖𝑖

= � 𝑚𝑚 d𝐯𝐯�⃑

𝐯𝐯�⃑=𝐯𝐯�⃑ 𝑓𝑓

𝐯𝐯�⃑ =𝐯𝐯�⃑ 𝑖𝑖

 

= 𝑚𝑚 � d𝐯𝐯�⃑

𝐯𝐯�⃑=𝐯𝐯�⃑ 𝑓𝑓

𝐯𝐯�⃑=𝐯𝐯�⃑ 𝑖𝑖

 

= 𝑚𝑚�𝐯𝐯�⃑𝑓𝑓 − 𝐯𝐯�⃑ 𝑖𝑖� 
= 𝑚𝑚𝐯𝐯�⃑𝑓𝑓 − 𝑚𝑚𝐯𝐯�⃑ 𝑖𝑖 

� ∑�⃑�𝐅 d𝑡𝑡

𝑡𝑡=𝑡𝑡𝑓𝑓

𝑡𝑡=𝑡𝑡𝑖𝑖�������
Δ𝐉𝐉Σ�⃑�𝐅

= Δ�𝑚𝑚𝐯𝐯�⃑�
𝐩𝐩��⃑
� 

Calculus-based 
 

d𝐯𝐯�⃑
d𝑡𝑡

=
∑ �⃑�𝐅
𝑚𝑚

 

� ∑�⃑�𝐅 ⋅ d𝓵𝓵�⃑

�⃑�𝐫=�⃑�𝐫𝑓𝑓

�⃑�𝐫=�⃑�𝐫𝑖𝑖

= � 𝑚𝑚
d𝐯𝐯�⃑
d𝑡𝑡

⋅ d𝓵𝓵�⃑

�⃑�𝐫=�⃑�𝐫𝑓𝑓

�⃑�𝐫=�⃑�𝐫𝑖𝑖

 

= � 𝑚𝑚 d𝐯𝐯�⃑ ⋅
d𝓵𝓵�⃑
d𝑡𝑡

𝐯𝐯�⃑=𝐯𝐯�⃑ 𝑓𝑓

𝐯𝐯�⃑=𝐯𝐯�⃑ 𝑖𝑖

 

= � 𝑚𝑚 d𝐯𝐯�⃑ ⋅ 𝐯𝐯�⃑

𝐯𝐯�⃑=𝐯𝐯�⃑ 𝑓𝑓

𝐯𝐯�⃑=𝐯𝐯�⃑ 𝑖𝑖

 

= � 𝑚𝑚 
d(𝐯𝐯�⃑ ⋅ 𝐯𝐯�⃑ )

2

𝐯𝐯�⃑=𝐯𝐯�⃑ 𝑓𝑓

𝐯𝐯�⃑=𝐯𝐯�⃑ 𝑖𝑖

 

=
1
2
𝑚𝑚 � d(𝑣𝑣2)

𝑣𝑣=𝑣𝑣𝑓𝑓

𝑣𝑣=𝑣𝑣𝑖𝑖

 

� ∑�⃑�𝐅 ⋅ d𝓵𝓵�⃑

�⃑�𝐫=�⃑�𝐫𝑓𝑓

�⃑�𝐫=�⃑�𝐫𝑖𝑖���������
Δ𝑊𝑊Σ�⃑�𝐅

=
1
2
𝑚𝑚𝑣𝑣𝑓𝑓2���
𝐾𝐾𝑓𝑓

−
1
2
𝑚𝑚𝑣𝑣𝑖𝑖2���
𝐾𝐾𝑖𝑖

 

Algebra-based 
 

Consider uniform acceleration in 1-d 
 

𝑣𝑣𝑖𝑖2 + 2𝑎𝑎∆ℓ = 𝑣𝑣𝑓𝑓2 

𝑣𝑣𝑖𝑖2 + 2�
∑𝐹𝐹
𝑚𝑚
�∆ℓ = 𝑣𝑣𝑓𝑓2 

1
2
𝑚𝑚𝑣𝑣𝑖𝑖2���
𝐾𝐾𝑖𝑖

+ (∑𝐹𝐹)∆ℓ�����
Δ𝑊𝑊∑�⃑�𝐅

=
1
2
𝑚𝑚𝑣𝑣𝑓𝑓2���
𝐾𝐾𝑓𝑓

 
𝑎𝑎IN(−𝐫𝐫�) + 𝑎𝑎TAN�̂�𝐭 =

∑𝐹𝐹IN(−𝐫𝐫�) + ∑𝐹𝐹TAN�̂�𝐭
𝑚𝑚

 

𝑎𝑎IN(−𝐫𝐫�) + 𝑟𝑟𝑟𝑟�̂�𝐭 =
∑𝐹𝐹IN(−𝐫𝐫�) + ∑𝐹𝐹TAN�̂�𝐭

𝑚𝑚
 

𝑟𝑟𝑟𝑟 =
∑𝐹𝐹TAN
𝑚𝑚

 

𝑟𝑟 =
∑𝐹𝐹TAN
𝑚𝑚𝑟𝑟

 

𝑟𝑟 =
∑𝑟𝑟𝐹𝐹TAN
𝑚𝑚𝑟𝑟2

 

𝑟𝑟 =
∑𝑟𝑟𝐹𝐹 sin 𝜃𝜃�������

𝜏𝜏

𝑚𝑚𝑟𝑟2�
𝐼𝐼

 

 

Δ𝐉𝐉Σ�⃑�𝐅 = Δ𝐩𝐩��⃑  
 

𝐩𝐩��⃑ 𝑖𝑖 + �∆𝐉𝐉F
F

�����
Δ𝐉𝐉Σ�⃑�𝐅

= 𝐩𝐩��⃑ 𝑓𝑓 
 

Δ𝑊𝑊Σ�⃑�𝐅 = Δ𝐾𝐾 
 

𝐾𝐾𝑖𝑖 + Δ𝑊𝑊Σ�⃑�𝐅 = 𝐾𝐾𝑓𝑓 
𝑟𝑟 =

∑𝜏𝜏
𝐼𝐼

 

 
 

For system of 𝑁𝑁 particles, 
 

𝐩𝐩��⃑ 1,𝑖𝑖 + Δ𝐉𝐉Σ�⃑�𝐅,NOT 1→1 = 𝐩𝐩��⃑ 1,𝑓𝑓 
𝐩𝐩��⃑ 2,𝑖𝑖 + Δ𝐉𝐉Σ�⃑�𝐅,NOT 2→2 = 𝐩𝐩��⃑ 2,𝑓𝑓 

⋮ 
𝐩𝐩��⃑ 𝑁𝑁,𝑖𝑖 + Δ𝐉𝐉Σ�⃑�𝐅,NOT 𝑁𝑁→𝑁𝑁 = 𝐩𝐩��⃑ 𝑁𝑁,𝑓𝑓 

 
Σ𝐩𝐩��⃑ 𝑖𝑖 + ΣΔ𝐉𝐉Σ�⃑�𝐅 = Σ𝐩𝐩��⃑ 𝑓𝑓 

 
Σ𝐩𝐩��⃑ 𝑖𝑖 + � Δ𝐉𝐉

EXT→SYS

+ �Δ𝐉𝐉
INT

= Σ𝐩𝐩��⃑ 𝑓𝑓 
 

Internal Newton’s third law interaction force pairs have opposite directions. The magnitude vs. time plots for each force from a third law pair 
is identical. Thus, pairs of impulses corresponding to third law force pairs cancel out.  
 

Σ𝐩𝐩��⃑ 𝑖𝑖 + � ∆𝐉𝐉F
EXT→SYS

�������
Δ𝐉𝐉Σ�⃑�𝐅,EXT→SYS

= Σ𝐩𝐩��⃑ 𝑓𝑓  

For system of 𝑁𝑁 particles, 
 

𝐾𝐾1,𝑖𝑖 + Δ𝑊𝑊Σ�⃑�𝐅,NOT 1→1 = 𝐾𝐾1,𝑓𝑓 
𝐾𝐾2,𝑖𝑖 + Δ𝑊𝑊Σ�⃑�𝐅,NOT 2→2 = 𝐾𝐾2,𝑓𝑓 

⋮ 
𝐾𝐾𝑁𝑁,𝑖𝑖 + Δ𝑊𝑊Σ�⃑�𝐅,NOT 𝑁𝑁→𝑁𝑁 = 𝐾𝐾𝑁𝑁,𝑓𝑓 

 
Σ𝐾𝐾𝑖𝑖 + ΣΔ𝑊𝑊Σ�⃑�𝐅 = Σ𝐾𝐾𝑓𝑓 

 
Σ𝐾𝐾𝑖𝑖 + � Δ𝑊𝑊

EXT→SYS

+ �Δ𝑊𝑊
INT

= Σ𝐾𝐾𝑓𝑓 

 

When the relative spatial arrangement of a collection of objects is changed, the total work performed by a given collection of third-law force pairs 
might or might not depend on the specific paths objects take to get from old to new positions. If this total work is path-independent for all 
combinations of initial and final positions in a domain of interest, we can choose to call this total work the negative of the change in the potential 
energy associated with the given collection of third-law force pairs.  
 

−Δ𝑈𝑈F,1…𝑁𝑁 ∶= Δ𝑊𝑊F,2→1 + Δ𝑊𝑊F,1→2 + ⋯+ Δ𝑊𝑊F,𝑁𝑁−1→𝑁𝑁 
 

Σ𝐾𝐾𝑖𝑖 + � Δ𝑊𝑊
EXT→SYS

− � Δ𝑈𝑈
SOME
INT
PAIRS

+ � Δ𝑊𝑊
OTHER
INT
PAIRS

= Σ𝐾𝐾𝑓𝑓 

 

One way to begin to describe the motion of a system of particles is to construct simplistic snapshots in which some microscopic details might be 
neglected (e.g. ignore microscopic lattice vibrations and pretend that a mass distribution is rigid). Total kinetic energy and total potential energy 
can be expressed using groups of “simplistic” terms and groups of terms that “correct for details.” “Simplistic” terms express energies computed 
using only simplified snapshots and their dynamics. Simplistic snapshots can fail to depict the precise locations and velocities of individual 
microscopic particles. Total kinetic and total potential energies computed using simplistic snapshots alone can fail to be accurate. These 
inaccuracies are made up for by groups of energy terms that “correct for details.” 
 

� 𝐾𝐾𝑖𝑖
SIMPLISTIC

+ � 𝐾𝐾𝑖𝑖
CORRECT

FOR
DETAILS

+ � Δ𝑊𝑊
EXT→SYS

− � Δ𝑈𝑈
SOME
INT

SIMPLISTIC

− � Δ𝑈𝑈
SOME
INT

CORRECT
FOR

DETAILS

+ � Δ𝑊𝑊
OTHER
INT
PAIRS

= � 𝐾𝐾𝑓𝑓
SIMPLISTIC

+ � 𝐾𝐾𝑓𝑓
CORRECT

FOR
DETAILS

 

 

When all the terms that “correct for details” correspond to details that are thought of as “chemical,” it is common to gather the “correct for details” 
terms together in a single sum of “changes in internal energy.” Σ∆𝑊𝑊OUF stands for the sum of work otherwise unaccounted for.  
 

Σ𝐾𝐾𝑖𝑖 + Σ𝑈𝑈G,𝑖𝑖 + Σ𝑈𝑈S,𝑖𝑖�������������
𝑀𝑀𝑀𝑀SYS,𝑖𝑖

+ Σ∆𝑊𝑊OUF = Σ𝐾𝐾𝑓𝑓 + Σ𝑈𝑈G,𝑓𝑓 + Σ𝑈𝑈S,𝑓𝑓�������������
𝑀𝑀𝑀𝑀SYS,𝑓𝑓

+ ΣΔ𝑈𝑈INT 

For a rigid system of 𝑁𝑁 particles, each particle has same 𝑟𝑟. 
 

𝐼𝐼1𝑟𝑟 = � 𝜏𝜏
NOT 1→1

 

𝐼𝐼2𝑟𝑟 = � 𝜏𝜏
NOT 2→2

 

⋮ 
𝐼𝐼𝑁𝑁𝑟𝑟 = � 𝜏𝜏

NOT 𝑁𝑁→𝑁𝑁

 

 
(∑𝐼𝐼)𝑟𝑟 = � 𝜏𝜏

NOT 1→1

+ � 𝜏𝜏
NOT 2→2

+ ⋯+ � 𝜏𝜏
NOT 𝑁𝑁→𝑁𝑁

 

 
(∑𝐼𝐼)𝑟𝑟 = � 𝜏𝜏

2,…,𝑁𝑁→1

+ � 𝜏𝜏
EXT→1

+ � 𝜏𝜏
1,3,…,𝑁𝑁→2

+ � 𝜏𝜏
EXT→2

+ ⋯+ � 𝜏𝜏
1,…,𝑁𝑁−1→𝑁𝑁

+ � 𝜏𝜏
EXT→𝑁𝑁

 

 

There is no known force law that generates Newton’s third law interaction force pairs that do not share a common 
line of action. Using this fact and the above illustration, we can argue that all internal torque pairs cancel.  
 

(∑𝐼𝐼)𝑟𝑟 = � 𝜏𝜏
EXT→SYS

 

 

𝑟𝑟 =
∑𝜏𝜏
𝐼𝐼  

 

Focus on torque and time Focus on torque and angular position 

𝐿𝐿 ∶= 𝐼𝐼𝐼𝐼 
 

𝐾𝐾RIGID WITH FIXED SKEWER =
1
2
𝐼𝐼 ABOUT
FIXED

SKEWER

𝐼𝐼2 

Δ𝑊𝑊Σ𝜏𝜏 = � � 𝜏𝜏AVG
EXT→SYS

�∆𝜃𝜃 

 

Σ𝐿𝐿𝑖𝑖 + � � 𝜏𝜏AVG
EXT→SYS

� ∆𝑡𝑡 = Σ𝐿𝐿𝑓𝑓  𝐾𝐾R.W.F.S.,𝑖𝑖 + Δ𝑊𝑊Σ𝜏𝜏 = 𝐾𝐾R.W.F.S.,𝑓𝑓 

 


